Data Analytics

Fast-Track Your Career: Become a Data Analytics Pro in Just 20 Weeks!

Get This Offer Now
Limited Time Offer 40% OFF
₹49,997 ₹29,999

बने Data Analytics के हीरो –GyaniPandit के साथ!

क्या आप भी सोचते हैं कि Data Analytics एक मुश्किल फील्ड है? अब नहीं! GyaniPandit लेकर आया है Comprehensive Data Analytics LIVE Certification Course – खासतौर पर उनके लिए जो बिना किसी प्रोग्रामिंग बैकग्राउंड के हैं।

शुरुआत से प्रोफेशनल लेवल तक – Zero से Hero तक का सफर
✅ सीखिए आज की सबसे ज़रूरी स्किल्स:

  • Python / R प्रोग्रामिंग
  • MS Excel
  • SQL
  • Power BI
  • Machine Learning
  • ChatGPT, Agentic AI और Generative AI – आज की सबसे एडवांस टेक्नोलॉजी

💻 Live classes, hands-on प्रोजेक्ट्स और expert mentors का सपोर्ट
📜 Industry-recognized Certificate
🎯 Job Assistance – ताकि आपको अच्छी नौकरी भी मिले!

🎁 Limited Seats – जल्दी रजिस्टर करें और अपने करियर को दें एक ज़बरदस्त शुरुआत!

JOB GROWTH
0 +
Lakh Average Salary
0
Jobs Increase Y/Y
0 +
Hands-On Projects
0 +

Get job-ready for top roles like -
Data Analyst, Business Analyst, Finance Analyst, Marketing Analyst
with our industry-focused Data Analytics Bootcamp.

Let’s Get Started

🛡️
100% Moneyback Guarantee
Get This Offer Now
Limited Time Offer 40% OFF
₹49,997 ₹29,999

+10 Years of experience

+50 Courses

+200 Collaborations

Why Choose GyaniPandit for Data Analytics?

Companies hiring Data Analysts nowadays

We don’t guarantee jobs — we guarantee skills that get you hired.

STEP BY STEP
MODULES COVERED

  1. Module 1: Python Introduction (8 lectures)

    • Lecture 1: What is Python & Why Use It?

    • Lecture 2: Installing Python, Anaconda & Jupyter Notebooks

    • Lecture 3: Python IDEs & Google Colab

    • Lecture 4: Syntax, Indentation & Comments

    • Lecture 5: Variables, Data Types & Type Conversion

    • Lecture 6: Basic Operators & Expressions

    • Lecture 7: String & List Manipulations

    • Lecture 8: File I/O & Exception Handling

  2. Module 2: Functions (6 lectures)

    • Defining Functions & Docstrings

    • Positional vs. Keyword Arguments

    • Default Params & *args/**kwargs

    • Return Values & Multiple Returns

    • Lambda Functions & map/filter

    • Writing & Importing Your Own Modules

  3. Module 3: Mathematical Operations (6 lectures)

    • Numeric Types & Typecasting

    • Math Module Functions

    • Random Number Generation

    • List Comprehensions for Calculations

    • datetime Basics

    • Working with decimal & fractions

  4. Module 4: Data Manipulation (6 lectures)

    • pandas Series & DataFrame Basics

    • Importing CSV, Excel & JSON

    • Indexing, Slicing & Filtering

    • Handling Missing Data & Duplicates

    • groupby & Aggregations

    • Merging, Joining & Concatenation

  5. Module 5: Visualization (6 lectures)

    • Matplotlib: Line, Bar & Scatter Plots

    • Customizing Titles, Labels & Legends

    • Seaborn: Distributions & Categorical Plots

    • Plot Aesthetics & Styles

    • Saving Figures & Interactive Charts

    • Intro to Plotly (Bonus)

  6. Module 6: Capstone Project (1 lecture + deliverable)

    • End-to-end mini-analysis: ingest → clean → explore → visualize

    • Submission & GitHub portfolio tips

  1. Module 1: Excel Essentials (8 lectures)

    • Interface & Ribbon Tour

    • Cell References & Data Entry

    • Basic Formulas (SUM, AVERAGE, IF)

    • Relative vs Absolute References

    • Named Ranges

    • Quick Analysis Tools

    • Keyboard Shortcuts

    • Workbook Management

  2. Module 2: Data Cleanup & Prep (6 lectures)

    • Text Functions (LEFT, RIGHT, MID)

    • Flash Fill & Text to Columns

    • Remove Duplicates & Data Validation

    • Find & Replace Tricks

    • Error Checking & Trace Dependents

    • Basic Power Query Intro

  3. Module 3: PivotTables & Slicers (6 lectures)

    • Creating PivotTables

    • Grouping & Drill-Down

    • Calculated Fields & Items

    • Inserting Slicers & Timelines

    • Pivot Charts

    • Refresh & Connection Options

  4. Module 4: Power Query Basics (6 lectures)

    • Getting & Transforming Data

    • M-Language Fundamentals

    • Merging & Appending Queries

    • Pivot & Unpivot

    • Parameterized Queries

    • Loading to Data Model

  5. Module 5: Charts & Dashboards (6 lectures)

    • Chart Types & When to Use Them

    • Customizing Chart Elements

    • Sparklines & Conditional Formatting

    • Building Interactive Dashboards

    • Form Controls & Slicers

    • Publishing to SharePoint/OneDrive

  6. Module 6: Excel Dashboard Project (1 lecture + deliverable)

    • Design & build a dynamic sales dashboard

    • Share and present your workbook

  1. Module 1: Descriptive Statistics (8 lectures)

    • Lecture 1: Measures of Central Tendency (Mean/Median/Mode)

    • Lecture 2: Measures of Dispersion (Range/Variance/Std Dev)

    • Lecture 3: Data Distributions & Histograms

    • Lecture 4: Boxplots & Outliers

  2. Module 2: Probability & Distributions (6 lectures)

    • Basic Probability Concepts

    • Bayes’ Theorem & Applications

    • Discrete Distributions: Binomial & Poisson

    • Continuous Distributions: Normal & Exponential

    • Sampling Distributions

    • Central Limit Theorem

  3. Module 3: Inferential Statistics (6 lectures)

    • Point & Interval Estimation

    • Confidence Intervals for Means & Proportions

    • Margin of Error & Sample Size

    • Introduction to Regression Analysis

    • Assumptions & Model Diagnostics

    • ANOVA Basics

  4. Module 4: Hypothesis Testing & A/B Tests (6 lectures)

    • Null & Alternative Hypotheses

    • Type I & II Errors

    • T-tests & Z-tests

    • Chi-Square Tests

    • Designing A/B Experiments

    • Interpreting p-values & Results

  5. Module 5: Stats in Tools (6 lectures)

    • Excel Analysis Toolpak Overview

    • Running Tests in Excel

    • scipy.stats Functions in Python

  6. Module 6: Statistics Mini-Project (1 lecture + deliverable)

    • Conduct a hypothesis test on a real dataset

    • Write a brief findings report

  1. Module 1: SQL Basics (8 lectures)

    • Lecture 1: Introduction to Relational Databases

    • Lecture 2: SELECT, FROM, WHERE

    • Lecture 3: Filtering & Sorting Data

    • Lecture 4: DISTINCT, LIMIT, OFFSET

    • Lecture 5: String & Date Functions

    • Lecture 6: Numeric & Aggregate Functions

    • Lecture 7: Aliasing & Comments

    • Lecture 8: Practice Queries

  2. Module 2: Aggregations & Grouping (6 lectures)

    • GROUP BY Basics

    • HAVING vs WHERE

    • Rolling & Window Aggregates

    • GROUPING SETS & CUBE (Intro)

    • Nested Aggregations

    • Performance Tips

  3. Module 3: JOINS & Subqueries (6 lectures)

    • Inner & Outer Joins

    • Self-Joins

    • Cross Joins & Cartesian Products

    • Correlated Subqueries

    • EXISTS vs IN

    • JOIN Performance

  4. Module 4: Database Design & Indexing (6 lectures)

    • Entity-Relationship Modeling

    • Normal Forms 1–3

    • Primary & Foreign Keys

    • Index Types & Creation

    • Query Plans & EXPLAIN

    • Backup & Restore Basics

  5. Module 5: SQL Query Challenge (1 lecture + deliverable)

    • Complex multi-table query on sample schema

    • Write & optimize your solution

  1. Module 1: Power BI Desktop & Data Sources (8 lectures)

    • Installing & Navigating the Desktop

    • Connecting to Excel, CSV & SQL Server

    • Data Import vs DirectQuery

    • Query Editor Basics

    • Transformations (Clean & Shape)

    • Merging & Appending Tables

    • Parameters & Functions

    • Data Refresh Settings

  2. Module 2: Data Modeling & DAX (6 lectures)

    • Relationships & Cardinality

    • Star vs Snowflake Schemas

    • Calculated Columns vs Measures

    • Basic DAX Functions (SUMX, CALCULATE)

    • Time Intelligence Functions

    • Tabular Model Best Practices

  3. Module 3: Building Reports & Visuals (6 lectures)

    • Report Canvas Layout

    • Native Visual Gallery

    • Drill-through & Bookmarks

    • Custom Visuals & Marketplace

    • Tooltips & Report Themes

    • Page Navigation

  4. Module 4: Advanced Features (6 lectures)

    • Row-Level Security

    • Composite Models

    • Aggregations & Incremental Refresh

    • AI Visuals (Key Influencers, Decomposition Tree)

    • Performance Analyzer

    • Deployment Pipelines (Intro)

  5. Module 5: Power BI Service & Sharing (6 lectures)

    • Publishing Reports & Apps

    • Workspaces & Roles

    • Apps vs Dashboards

    • Dataflows & Shared Datasets

    • Power BI Mobile Overview

    • Usage Metrics & Governance

  6. Module 6: Capstone Dashboard (1 lecture + deliverable)

    • Build a fully interactive executive dashboard

    • Deploy & share with stakeholders

  1. Module 1: ML Foundations & Familiarity (6 lectures)

    • Lecture 1: What Is Machine Learning & When to Use It

    • Lecture 2: The ML Pipeline: Data → Model → Evaluate

    • Lecture 3: Supervised vs. Unsupervised Learning (High-Level)

    • Lecture 4: Simple Regression Demo (Linear Regression Intuition)

    • Lecture 5: Simple Classification Demo (Logistic Regression Intuition)

    • Lecture 6: Overfitting vs. Underfitting & Train/Test Split

  2. Module 2: Mini ML Exploration (1 lecture + deliverable)

    • Build a tiny regression or classification model on a sample dataset

    • Interpret results & share findings

BUY IT TODAY & UNLOCK BONUS OF ₹14999 FOR FREE

🎁 BONUS 1: Lifetime Access to Session Recordings

Missed a class? No problem! Students get lifetime access to all live session recordings so they can revise anytime, anywhere — even after the course ends. ✅ Great for revision ✅ Builds trust ✅ Students feel more secure before buying

🎁 BONUS 2: Free Resume + LinkedIn Profile Review

Stand out to recruiters! After course completion, students get 1-on-1 feedback on their resume and LinkedIn profile from our expert team. ✅ Personal touch ✅ Helps them get interviews faster ✅ Feels like premium career support

Frequently Asked Questions

No prior programming or technical experience is required. This course is designed for absolute beginners.

This Course is designed keeping beginner students in mind. We move from beginner, to advanced concepts.

The total course duration would be 4 months – Contact us for specific batch details.

Yes, you’ll receive a Comprehensive Data Analytics Certification upon successful completion.

We’re confident you’ll love the learning experience — but if you’re not satisfied, we’ve got you covered.

You can request a full refund within 2 days of purchase or before your second live session, whichever comes first.
Just email us at [email protected] with your order ID or registered email and the reason for the refund.

✅ No questions asked
✅ No hidden fees
✅ 100% of your payment will be refunded

Note: Refunds requested after 2 days or post-second session won’t be eligible. Refunds are processed within 7–10 business days to your original payment method.

You’ll master Python, R, MS Excel, SQL, Power BI, and explore Machine Learning, ChatGPT, and Generative AI.

Yes, we offer 100% job assistance through our exclusive job portal and career guidance.

Yes, we provide live doubt-clearing sessions and dedicated mentor support.