Data Analytics
Fast-Track Your Career: Become a Data Analytics Pro in Just 20 Weeks!
बने Data Analytics के हीरो –GyaniPandit के साथ!
क्या आप भी सोचते हैं कि Data Analytics एक मुश्किल फील्ड है? अब नहीं! GyaniPandit लेकर आया है Comprehensive Data Analytics LIVE Certification Course – खासतौर पर उनके लिए जो बिना किसी प्रोग्रामिंग बैकग्राउंड के हैं।
✅ शुरुआत से प्रोफेशनल लेवल तक – Zero से Hero तक का सफर
✅ सीखिए आज की सबसे ज़रूरी स्किल्स:
- Python / R प्रोग्रामिंग
- MS Excel
- SQL
- Power BI
- Machine Learning
- ChatGPT, Agentic AI और Generative AI – आज की सबसे एडवांस टेक्नोलॉजी
💻 Live classes, hands-on प्रोजेक्ट्स और expert mentors का सपोर्ट
📜 Industry-recognized Certificate
🎯 Job Assistance – ताकि आपको अच्छी नौकरी भी मिले!
🎁 Limited Seats – जल्दी रजिस्टर करें और अपने करियर को दें एक ज़बरदस्त शुरुआत!

Get job-ready for top roles like -
Data Analyst,
Business Analyst,
Finance Analyst,
Marketing Analyst
with our industry-focused Data Analytics Bootcamp.
Let’s Get Started
+10 Years of experience
+50 Courses
+200 Collaborations
Why Choose GyaniPandit for Data Analytics?

- Live Interactive Classes
- Instant Doubt Clearing
- 24/7 Support
- Regular Assessments
- Certification
- Comprehensive Notes
- Mentor Support
- 100% Job Assistance
Companies hiring Data Analysts nowadays
We don’t guarantee jobs — we guarantee skills that get you hired.












STEP BY STEP
MODULES COVERED
Module 1: Python Introduction (8 lectures)
Lecture 1: What is Python & Why Use It?
Lecture 2: Installing Python, Anaconda & Jupyter Notebooks
Lecture 3: Python IDEs & Google Colab
Lecture 4: Syntax, Indentation & Comments
Lecture 5: Variables, Data Types & Type Conversion
Lecture 6: Basic Operators & Expressions
Lecture 7: String & List Manipulations
Lecture 8: File I/O & Exception Handling
Module 2: Functions (6 lectures)
Defining Functions & Docstrings
Positional vs. Keyword Arguments
Default Params &
*args
/**kwargs
Return Values & Multiple Returns
Lambda Functions &
map
/filter
Writing & Importing Your Own Modules
Module 3: Mathematical Operations (6 lectures)
Numeric Types & Typecasting
Math Module Functions
Random Number Generation
List Comprehensions for Calculations
datetime
BasicsWorking with
decimal
&fractions
Module 4: Data Manipulation (6 lectures)
pandas Series & DataFrame Basics
Importing CSV, Excel & JSON
Indexing, Slicing & Filtering
Handling Missing Data & Duplicates
groupby
& AggregationsMerging, Joining & Concatenation
Module 5: Visualization (6 lectures)
Matplotlib: Line, Bar & Scatter Plots
Customizing Titles, Labels & Legends
Seaborn: Distributions & Categorical Plots
Plot Aesthetics & Styles
Saving Figures & Interactive Charts
Intro to Plotly (Bonus)
Module 6: Capstone Project (1 lecture + deliverable)
End-to-end mini-analysis: ingest → clean → explore → visualize
Submission & GitHub portfolio tips
Module 1: Excel Essentials (8 lectures)
Interface & Ribbon Tour
Cell References & Data Entry
Basic Formulas (
SUM
,AVERAGE
,IF
)Relative vs Absolute References
Named Ranges
Quick Analysis Tools
Keyboard Shortcuts
Workbook Management
Module 2: Data Cleanup & Prep (6 lectures)
Text Functions (
LEFT
,RIGHT
,MID
)Flash Fill & Text to Columns
Remove Duplicates & Data Validation
Find & Replace Tricks
Error Checking & Trace Dependents
Basic Power Query Intro
Module 3: PivotTables & Slicers (6 lectures)
Creating PivotTables
Grouping & Drill-Down
Calculated Fields & Items
Inserting Slicers & Timelines
Pivot Charts
Refresh & Connection Options
Module 4: Power Query Basics (6 lectures)
Getting & Transforming Data
M-Language Fundamentals
Merging & Appending Queries
Pivot & Unpivot
Parameterized Queries
Loading to Data Model
Module 5: Charts & Dashboards (6 lectures)
Chart Types & When to Use Them
Customizing Chart Elements
Sparklines & Conditional Formatting
Building Interactive Dashboards
Form Controls & Slicers
Publishing to SharePoint/OneDrive
Module 6: Excel Dashboard Project (1 lecture + deliverable)
Design & build a dynamic sales dashboard
Share and present your workbook
Module 1: Descriptive Statistics (8 lectures)
Lecture 1: Measures of Central Tendency (Mean/Median/Mode)
Lecture 2: Measures of Dispersion (Range/Variance/Std Dev)
Lecture 3: Data Distributions & Histograms
Lecture 4: Boxplots & Outliers
Module 2: Probability & Distributions (6 lectures)
Basic Probability Concepts
Bayes’ Theorem & Applications
Discrete Distributions: Binomial & Poisson
Continuous Distributions: Normal & Exponential
Sampling Distributions
Central Limit Theorem
Module 3: Inferential Statistics (6 lectures)
Point & Interval Estimation
Confidence Intervals for Means & Proportions
Margin of Error & Sample Size
Introduction to Regression Analysis
Assumptions & Model Diagnostics
ANOVA Basics
Module 4: Hypothesis Testing & A/B Tests (6 lectures)
Null & Alternative Hypotheses
Type I & II Errors
T-tests & Z-tests
Chi-Square Tests
Designing A/B Experiments
Interpreting p-values & Results
Module 5: Stats in Tools (6 lectures)
Excel Analysis Toolpak Overview
Running Tests in Excel
scipy.stats
Functions in Python
Module 6: Statistics Mini-Project (1 lecture + deliverable)
Conduct a hypothesis test on a real dataset
Write a brief findings report
Module 1: SQL Basics (8 lectures)
Lecture 1: Introduction to Relational Databases
Lecture 2:
SELECT
,FROM
,WHERE
Lecture 3: Filtering & Sorting Data
Lecture 4:
DISTINCT
,LIMIT
,OFFSET
Lecture 5: String & Date Functions
Lecture 6: Numeric & Aggregate Functions
Lecture 7: Aliasing & Comments
Lecture 8: Practice Queries
Module 2: Aggregations & Grouping (6 lectures)
GROUP BY
BasicsHAVING
vsWHERE
Rolling & Window Aggregates
GROUPING SETS & CUBE (Intro)
Nested Aggregations
Performance Tips
Module 3: JOINS & Subqueries (6 lectures)
Inner & Outer Joins
Self-Joins
Cross Joins & Cartesian Products
Correlated Subqueries
EXISTS vs IN
JOIN Performance
Module 4: Database Design & Indexing (6 lectures)
Entity-Relationship Modeling
Normal Forms 1–3
Primary & Foreign Keys
Index Types & Creation
Query Plans & EXPLAIN
Backup & Restore Basics
Module 5: SQL Query Challenge (1 lecture + deliverable)
Complex multi-table query on sample schema
Write & optimize your solution
Module 1: Power BI Desktop & Data Sources (8 lectures)
Installing & Navigating the Desktop
Connecting to Excel, CSV & SQL Server
Data Import vs DirectQuery
Query Editor Basics
Transformations (Clean & Shape)
Merging & Appending Tables
Parameters & Functions
Data Refresh Settings
Module 2: Data Modeling & DAX (6 lectures)
Relationships & Cardinality
Star vs Snowflake Schemas
Calculated Columns vs Measures
Basic DAX Functions (
SUMX
,CALCULATE
)Time Intelligence Functions
Tabular Model Best Practices
Module 3: Building Reports & Visuals (6 lectures)
Report Canvas Layout
Native Visual Gallery
Drill-through & Bookmarks
Custom Visuals & Marketplace
Tooltips & Report Themes
Page Navigation
Module 4: Advanced Features (6 lectures)
Row-Level Security
Composite Models
Aggregations & Incremental Refresh
AI Visuals (Key Influencers, Decomposition Tree)
Performance Analyzer
Deployment Pipelines (Intro)
Module 5: Power BI Service & Sharing (6 lectures)
Publishing Reports & Apps
Workspaces & Roles
Apps vs Dashboards
Dataflows & Shared Datasets
Power BI Mobile Overview
Usage Metrics & Governance
Module 6: Capstone Dashboard (1 lecture + deliverable)
Build a fully interactive executive dashboard
Deploy & share with stakeholders
Module 1: ML Foundations & Familiarity (6 lectures)
Lecture 1: What Is Machine Learning & When to Use It
Lecture 2: The ML Pipeline: Data → Model → Evaluate
Lecture 3: Supervised vs. Unsupervised Learning (High-Level)
Lecture 4: Simple Regression Demo (Linear Regression Intuition)
Lecture 5: Simple Classification Demo (Logistic Regression Intuition)
Lecture 6: Overfitting vs. Underfitting & Train/Test Split
Module 2: Mini ML Exploration (1 lecture + deliverable)
Build a tiny regression or classification model on a sample dataset
Interpret results & share findings
BUY IT TODAY & UNLOCK BONUS OF ₹14999 FOR FREE

🎁 BONUS 1: Lifetime Access to Session Recordings
Missed a class? No problem! Students get lifetime access to all live session recordings so they can revise anytime, anywhere — even after the course ends. ✅ Great for revision ✅ Builds trust ✅ Students feel more secure before buying

🎁 BONUS 2: Free Resume + LinkedIn Profile Review
Stand out to recruiters! After course completion, students get 1-on-1 feedback on their resume and LinkedIn profile from our expert team. ✅ Personal touch ✅ Helps them get interviews faster ✅ Feels like premium career support
Frequently Asked Questions
No prior programming or technical experience is required. This course is designed for absolute beginners.
This Course is designed keeping beginner students in mind. We move from beginner, to advanced concepts.
The total course duration would be 4 months – Contact us for specific batch details.
Yes, you’ll receive a Comprehensive Data Analytics Certification upon successful completion.
We’re confident you’ll love the learning experience — but if you’re not satisfied, we’ve got you covered.
You can request a full refund within 2 days of purchase or before your second live session, whichever comes first.
Just email us at [email protected] with your order ID or registered email and the reason for the refund.
✅ No questions asked
✅ No hidden fees
✅ 100% of your payment will be refunded
Note: Refunds requested after 2 days or post-second session won’t be eligible. Refunds are processed within 7–10 business days to your original payment method.
You’ll master Python, R, MS Excel, SQL, Power BI, and explore Machine Learning, ChatGPT, and Generative AI.
Yes, we offer 100% job assistance through our exclusive job portal and career guidance.
Yes, we provide live doubt-clearing sessions and dedicated mentor support.